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A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization
uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational
efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual
smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure.
A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Appli-
cations are presented for an annular vane with and without end wall contouring, and for a large-scale linear
cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

Introduction

I MPROVING efficiency and specific work while reducing
weight, cost, and number of components and maintain-

ing a good level of performance in a wide range of opera-
tional conditions is the goal of turbomachinery design. The
last decade has seen an impressive evolution both in the
understanding and in the simulation of flow features. In this
process computational fluid dynamics (CFD) is playing a
more and more important role. In turbomachinery applica-
tions, modern components operate under very complex three-
dimensional flow conditions, and further improvement of
performance requires detailed knowledge of the flow struc-
ture. Particularly, the need to predict off-design conditions,
secondary flows, and heat transfer forces us to look at viscous
models. Even if a two-dimensional or quasi-three-dimensional
analysis is very useful, three-dimensional simulation will be
the basic tool in the design of the next generation of tur-
bomachinery. The real flow inside a turbomachine is un-
steady and dominated by rotor-stator interactions and wake
effects. However, the time-accurate simulation of an entire
turbine or compressor is beyond the capability of current
computers. On the contrary, a steady, viscous, blade-row
analysis is now beginning to be feasible for designers, al-
though much effort is still needed to improve accuracy and
to reduce the computational cost. Some important examples
of three-dimensional viscous cascade flow predictions are in
Refs. 1-7.

In 1988, we started a research project on viscous cascade
flow simulation. During this work, we developed the TRAF2D
code (transonic flow 2-dimensional).8-9 This code is capable
of solving two-dimensional viscous cascade flows using H-type
or C-type grids and of predicting heat transfer effects. In this
article the procedure is extended to the three-dimensional
case (TRAF3D). Particular attention has been dedicated to
aspects which are important for the designer, such as accuracy,
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computational cost, and the correct prediction of pressure,
exit angles, and loss coefficients.

As for accuracy, a new kind of elliptically generated C-type
grid is stacked in three dimensions. The removal of periodicity
on the wake allows the grid to be only slightly distorted, even
for cascades having a large camber or a high stagger angle.
This allows us to pick up details of the throat flow with a
reasonable number of grid points. In addition, a very low
level of artificial dissipation is guaranteed by eigenvalues scal-
ing, which is a three-dimensional extension of the one pro-
posed by Martinelli10 and Swanson and Turkel.11

As for efficiency, the Reynolds-averaged Navier-Stokes
equations are solved using a Runge-Kutta scheme in con-
junction with accelerating techniques. Variable-coefficient
implicit residual smoothing, as well as the full approximation
storage (FAS) multigrid scheme of Brandt and Jameson have
been used in the TRAF3D code. Those accelerating strategies
are implemented in conjunction with grid refinement to get
a "full multigrid method." The two-layer eddy-viscosity
model of Baldwin and Lomax12 is used for the turbulence clo-
sure.

The capability of the code is shown by comparing the com-
puted results to experiments for the Goldman annular vane
with and without end-wall contouring, and for the low-speed
Langston linear cascade. For the case of the vane, a grid-
dependency analysis is presented.

By using the accelerating strategies, detailed, viscous three-
dimensional solutions on a grid with nearly a half-million
points can be obtained in less than 1 h on a modern super-
computer such as a Cray Y-MP.

Governing Equations
Let p, u,v, w, p, T, E, and H denote density, the absolute

velocity components in the x, y, and z Cartesian directions,
pressure, temperature, specific total energy, and specific total
enthalpy, respectively. The three-dimensional, unsteady,
Reynolds-aver aged Navier-Stokes equations, neglecting body
forces and heat sources, can be written for a fixed-blade pas-
sage in conservative form in a curvilinear coordinate system
t, i?, £ as

BGV dHv
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The contravariant velocity components of Eq. (2) are written
as

U = £xu + gv + £zw, V = j]xu + 17 yv + j]z

W =

and the transformation metrics are defined by

(3)

where the Jacobian of the transformation / is
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The viscous flux terms are assembled in the form
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and the Cartesian derivatives of Eq. (7) are expressed in terms
of £, 77, and £ derivatives using the chain rule, i.e.

ux = £xus 4- j]xu^ + £>£ (8)

The pressure is obtained from the equation of state

p = pRT (9)

According to the Stokes hypothesis, A is taken to be —2/1/3,
and a power law is used to determine the molecular coefficient
of viscosity \L as function of temperature. The eddy-viscosity
hypothesis is used to account for the effect of turbulence. The
molecular viscosity ju and the molecular thermal conductivity
k are replaced with

= fit +

k =

(10)

(U)

where cp is the specific heat at constant pressure, Pr is the
Prandtl number, and the subscripts / and t refer to laminar
and turbulent, respectively. The turbulent quantities /tr and
Prt are computed using the two-layer mixing length model of
Baldwin and Lomax.12 The contribution of the eddy-viscosity
is computed separately in the blade-to-blade direction 17 and
in the spanwise direction £. The inverse of the square of the
wall distances d is then used to compute the resulting eddy-
viscosity

•7" r^1/^72\ _i_ /1/^2M ^ '

(13)

The transitional criteria of Baldwin and Lomax is adopted on
the airfoil surface while on the end walls, the shear layer is
assumed to be fully turbulent from the inlet boundary.

Spatial Discretization
Traditionally, using a finite volume approach, the govern-

ing equations are discretized in space starting from an integral
formulation and without any intermediate mapping. The
transformation metrics of Eq. (4) can then be associated with
the projections of the face areas as the contravariant com-
ponents of Eq. (3) can be related to the normal components
of the velocity. In the present work, due to the large use of
eigenvalues and curvilinear quantities, we found it more con-
venient to map the Cartesian space (*, y, z) in a generalized
curvilinear one (f, 17, £). In the curvilinear system, the equa-
tion of motion [Eq. (1)] can easily be rewritten in integral
form by means of Green's theorem, and the metric terms are
handled following the standard finite volume formulation.
The computational domain is divided into hexahedrons and
the transformation metrics are evaluated so that the projected
areas of the cell faces are given by the ratio of the appropriate
metric derivatives to the Jacobian ones, i.e., 1-JJ is the pro-
jection onto the x axis of a cell face at a fixed £ location. A
cell-centered scheme is used to store the flow variables. On
each cell face the convective and diffusive fluxes are calculated
after computing the necessary flow quantities at the face cen-
ter. Those quantities are obtained by a simple averaging of
adjacent cell-center values of the dependent variables.

(7) Boundary Conditions
In cascade calculations we have four different types of

boundaries: 1) inlet, 2) outlet, 3) solid walls, and 4) perio-
dicity. At the inlet, the presence of boundary layers (on hub
and tip end walls) is accounted for by giving a total pressure
and a total temperature profile whose distribution simulates
the experimental one. According to the theory of character-
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istics, the flow angles, total pressure, total temperature, and
isentropic relations are used at the subsonic-axial inlet, while
the outgoing Riemann invariant is taken from the interior.
At the subsonic-axial outlet, the average value of the static
pressure at the hub is prescribed and the density and com-
ponents of velocity are extrapolated together with the cir-
cumferential distribution of pressure. The radial equilibrium
equation is used to determine the spanwise distribution of the
static pressure. On the solid walls, the pressure is extrapolated
from the interior points, and the no-slip condition and the
temperature condition are used to compute density and total
energy. For the calculations presented in this article, all the
walls have been assumed to be adiabatic.

Cell-centered schemes are generally implemented using
phantom cells to handle the boundaries. The periodicity from
blade passage to blade passage is, therefore, easily overim-
posed by setting periodic phantom cell values. On the bound-
aries where the grid is not periodic, the phantom cells overlap
the real ones. Linear interpolations are then used to compute
the value of the dependent variables in phantom cells.

Artificial Dissipation
In viscous calculations, dissipating properties are present

due to diffusive terms. Away from the shear-layer regions,
the physical diffusion is generally not sufficient to prevent the
odd-even point decoupling of centered schemes. Thus, to
maintain stability and to prevent oscillations near shocks or
stagnation points, artificial dissipation terms are also included
in the viscous calculations. Equation (1) is written in semi-
discrete form as

where A^, A,,, and A^ are the scaled spectral radii of the flux
Jacobian matrices for the convective terms

+ C(Q) - D(Q) = 0 (14)

where the discrete operator C accounts for the physical con-
vective and diffusive terms, while D is the operator for the
artificial dissipation. The artificial dissipation model used in
this article is basically the one originally introduced by Jame-
son et al.13 In order to minimize the amount of artificial dif-
fusion inside the shear layer, the eigenvalues scaling of
Martinelli10 and Swanson and Turkel11 have been used to
weight these terms. The quantity D(Q) in Eq. (14) is defined
as

D(Q) = (D\ - D\ + D% - D\ + D\- D$Q (15)

where, e.g., in the £ curvilinear coordinates we have

D2
eQ = V{[A,.+ 1/2,Mef+>1/2JJAfQ,M

z, ;', k are indices associated with the £, 17, ( directions, and
Vf , A^ are forward and backward difference operators in the
£ direction. The variable scaling factor A is defined for the
three-dimensional case as

where

A, =

(17)

(18)

The definition of the coefficient <t> has been extended to the
three-dimensional case as follows:

(19)

Af = 117| +

A,, = \V[ +

A« = \W\ +
(20)
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and a is the speed of sound. The exponent a is generally
defined by 0 < a < 1, and for two-dimensional applications,
a value of i gives satisfactory results. In three-dimensional
cascade flow calculations, we generally have highly stretched
meshes in two directions near corners. We found that or =
0.4 introduces enough scaling without compromising the ro-
bustness. The coefficients e(2) and £(4) use the pressure as a
sensor for shocks and stagnation points, and are defined as
follows:

(21)

(22)

(23)

where typical values for the constants K(2) and j£(4) are 5 and
A, respectively. For the remaining directions 17 and £, the
contribution of dissipation is defined in a similar way. The
computation of the dissipating terms is carried out in each
coordinate direction as the difference between first- and third-
difference operators. Those operators are set to zero on solid
walls in order to reduce the global error on the conservation
property and to prevent the presence of undamped modes.11-14'15

Time-Stepping Scheme
The system of the differential Eq. (14) is advanced in time

using an explicit four-stage Runge-Kutta scheme until the
steady-state solution is reached. A hybrid scheme is imple-
mented, where, for economy, the viscous terms are evaluated
only at the first stage and then frozen for the remaining stages.
If n is the index associated with time, we will write it in the
form

Q(0) = Qn

QC2) =

= Q(4)

= 2,
_ -j

where the residual R(Q) is defined by

R(Q) = At7[C((2) - D(Q)] (25)

Good, high-frequency damping properties, important for the
multigrid process, have been obtained by performing two
evaluations of the artificial dissipating terms, at the first and
second stages. It is worthwhile to notice that, in the Runge-
Kutta time-stepping schemes, the steady-state solution is in-
dependent of the time step; therefore, this stepping is partic-
ularly amenable to convergence acceleration techniques.

It is important to notice that from the definition of residual
of Eq. (25), variable scaling, and time steps of Eqs. (26-28),
it results that the artificial dissipation is scaled with a factor
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proportional to the ratio between the global time step and
the inviscid time step. Close to solid walls, the grid volume
is very small and viscous time-step limitation is dominant. The
ratio of the time step over the inviscid one becomes very small
and most of the artificial dissipation is removed.

where the coefficients &X9 Oy, and <&z are the ones defined in
Eq. (19), and CFL, and CFL* are the Courant numbers of
the smoothed and unsmoothed scheme, respectively. For the
hybrid four-stage scheme we used CFL = 5, and CFL* =
2.5.

Acceleration Techniques
In order to reduce the computational cost, four techniques

are employed to speed up convergence to the steady-state
solution. These techniques 1) local time stepping, 2) residual
smoothing, 3) multigrid, and 4) grid refinement are separately
described in the following.

Local Time Stepping
For steady-state calculations with a time-marching ap-

proach, a faster expulsion of disturbances can be achieved by
locally using the maximum available time step. In the present
work, the local time-step limit A£ is computed accounting for
both the convective (Arc) and diffusive (A^) contributions as
follows:

(26)

where CQ is a constant usually taken to be the Courant-Fried-
richs-Lewy (CFL) number. Specifically, for the inviscid and
viscous time step we used

c = [l/(Ae + A,, + A,)]

where y is the specific heat ratio and

= x yj

y2
{

(27)

(28)

(29)

Kt being a constant whose value has been set equal to 2.5
based on numerical experiments.

Residual Smoothing
An implicit smoothing of residuals is used to extend the

stability limit and the robustness of the basic scheme. This
technique was first introduced by Lerat16 in 1979 in conjunc-
tion with Lax-Wendroff-type schemes. Later, in 1983, Jameson17

implemented it on the Runge-Kutta stepping scheme. In three
dimensions we carried out the residual smoothing in the form

(30)

where the residual R includes the contribution of the variable
time step and is defined by Eq. (25), and R is the residual
after a sequence of smoothing in the f, 17, and £ directions
with coefficients /^, /?,,, and /3^.

For viscous calculations on highly stretched meshes, the
variable coefficient formulations of Martinelli10 and Swanson11

have proven to be robust and reliable. In this article, the
expression for the variable coefficients /3 of Eq. (30) has been
modified to be used in three dimensions as follows:

= max \ 0,
CFL* A, +

-,]}ii

Multigrid
This technique was developed in the beginning of the 1970s

for the solution of elliptic problems18 and was later extended
to time-dependent formulations.19'20 The basic idea is to in-
troduce a sequence of coarser grids and to use them to speed
up the propagation of the fine grid corrections, resulting in a
faster expulsion of disturbances. In this work we used the
FAS schemes of Brandt18 and Jameson.20

Coarser, auxiliary meshes are obtained by doubling the
mesh spacing and the solution is defined on them using a rule
which conserves mass, momentum, and energy

where the subscripts refer to the grid spacing, and the sum is
over the eight cells which compose the 2h grid cell. Note that
this definition coincides with the one used by Jameson when
the reciprocal of the Jacobians are replaced with the cell vol-
umes. To respect the fine grid approximation, forcing func-
tions P are defined on the coarser grids and added to the
governing equations. So, after the initialization of Q2h using
Eq. (32), forcing functions P2h are defined as

PZH = iL Rh(Qh) ~ R2h(Q(
2h

)) (33)

and added to the residuals R2h to obtain the value R 2h which
is then used for the stepping scheme:

This procedure is repeated on a succession of coarser grids
and the corrections computed on each coarse grid are trans-
ferred back to the finer one by bilinear interpolations.

A V-type cycle with subiterations is used as a multigrid
strategy. The process is advanced from the fine grid to the
coarser one without any intermediate interpolation, and when
the coarser grid is reached, corrections are passed back. One
Runge-Kutta step is performed on the h grid, two on the 2h
grid, and three on all the coarser grids. It is our experience
in cascade flow calculations that subiterations increase the
robustness of the multigrid.

For viscous flows with very low Reynolds number or strong
separation, it is important to compute the viscous terms on
the coarse grids, too. The turbulent viscosity is evaluated only
on the finest grid level and then interpolated on coarse grids.

On each grid, the boundary conditions are treated in the
same way and updated at every Runge-Kutta stage. For econ-
omy, the artificial dissipation model is replaced on the coarse
grids with constant coefficient second-order differences.

The interpolations of the corrections introduce high-fre-
quency errors. In order to prevent those errors from being
reflected in the eddy viscosity, turbulent quantities are up-
dated after performing the stepping on the fine grid. On coarse
grids, the turbulent viscosity is evaluated by averaging the
surrounding fine grid values.

Grid Refinement
A grid refinement strategy is used to provide a cost-effective

initialization of the fine grid solution. This strategy is imple-
mented in conjunction with multigrid to obtain a full multigrid
(FMG) procedure. With the FMG method, the solution is
initialized on a coarser grid of the basic grid sequence and
iterated a prescribed number of cycles of the FAS scheme.
The solution is then passed, by bilinear interpolations, onto
the next, finer grid and the process is repeated until the finest
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grid level is reached. In this article we have introduced three
levels of refinement with two, three, and four grids, respec-
tively.

Computational Grid
The three-dimensional grids are obtained by stacking two-

dimensional grids generated on the blade-to-blade surface
(f, 77 plane). In the blade-to-blade projection, the grids are
nonperiodic C-type ones and are elliptically generated, con-
trolling the grid spacing and orientation at the wall. The C-
type structure has been chosen to model the blunt leading
edge typical of turbine blading. The problem of grid skewness
due to high stagger or large camber is addressed by allowing
the grid to be nonperiodic on the wake. This grid structure,
recently introduced by the authors9 for two-dimensional ap-
plications, has proven to be effective in turbomachinery ap-
plications.

In the spanwise direction (£) a standard H-type structure
has been adopted. Near the hub and tip walls, geometric
stretching is used for a specified number of grid points, after
which the spanwise spacing remains constant.

Applications and Discussion
As applications of the procedure that has been described

above, we used the TRAF3D code to predict the flow in an
annular and linear cascade. The annular cascade is the one
tested by Goldman and Seasholtz,21'22 and experiments are
available for configurations both with and without end-wall
contouring. The inlet boundary layer for this case is quite thin
and the secondary flows are not extremely pronounced. On
the contrary, the large-scale linear cascade of Langston23-24 is

Fig. 1 177 x 33 x 65 Computational grids for the Goldman annular
vanes with and without contoured end walls: a) without contoured end
wall, b) with contoured end wall.
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Fig. 2 Goldman annular vane without contoured end wall: a) convergence history, b) isentropic Mach number distribution near hub, c) isentropic
Mach number distribution at midspan, and d) isentropic Mach number distribution near tip.
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Fig. 3 Goldman annular vane without contoured end wall. After-mixed spanwise distribution of pressure, exit angle, and loss coefficients at J
axial chord away from trailing edge: a) pressure, b) exit angle, c) total pressure loss, and d) energy loss coefficient.

a nice test case to investigate the code's capability of pre-
dicting the three-dimensional features of the flow.

Calculations for these three blade passages will be pre-
sented in this section along with a grid sensitivity study.

Goldman Annular Vane
This annular vane was tested by Goldman21 with laser an-

emometer measurements. Pressure distribution in the blade
passage, and details of the exit losses and angle spanwise
variations made this test very interesting for code assessment.

In a previous work9 we carried out a two-dimensional grid
dependency study in order to figure out the mesh require-
ments necessary to obtain a space-converged calculation, es-
pecially for skin friction and heat transfer predictions. Those
results can be extrapolated to the three-dimensional case, but
the resulting number of grid points is quite large, nearly a
half-million points. In three-dimensional applications, the
memory and time requirements can be large, even for a mod-
ern supercomputer, so a grid dependency study can be useful
in optimizing the mesh size. We introduced three grids of 97
x 17 x 25, 127 x 25 x 49, and 177 x 33 x 65 grid points,
respectively. The fine mesh spacing at the wall is 2 x 10 ~4

axial chord in the blade-to-blade direction and 5 x 10 ~4 in
the spanwise one. Using those spacings, the v+ at the wall is
roughly less than two when the exit Reynolds number is about
one million. On the medium and coarse grids, the wall spac-
ings are two times and four times the fine grid ones, respec-
tively. On the three meshes there are 33, 49, and 65 points,
respectively, on the suction surface of the airfoil. A three-
dimensional view of the fine grid for the Goldman cascade
without end-wall contouring is given in Fig. la. The low level

of skewness obtained by stacking nonperiodic C-type grids is
evident.

The convergence of the rms of the residuals of the conti-
nuity equation is given in Fig. 2a. This calculation refers to
the fine mesh (380,000 grid points) and requires about 45 min
on the Cray Y-MP. If we assume we have reached a good
level of convergence when the residuals have dropped four
decades, the medium mesh (156,000 grid points) takes 15 min,
while about 6 min are needed for the coarse mesh calculation
(41,000 grid points).

For this test case, the inlet flow is axial and the exit isen-
tropic Mach number at the hub is about 0.809. Figures 2b-d
show the experimental and computed isentropic surface Mach
number distribution near the hub, at midspan, and near the
tip. All the grids correctly predict the distribution, the slight
underestimation of the coarse grid with respect to the medium
and fine ones is mostly due to the higher level of predicted
losses.

Goldman21 measured the spanwise distributions of the after-
mixed pressure, exit flow angle, total pressure loss coefficient,
and energy loss coefficient at 3 axial chord away from the
trailing edge. The predicted distribution of these quantities is
compared to experiments in Fig. 3. Overall, the agreement
is very good. The radial distribution of the static pressure is
accurately reproduced (see Fig. 3a), while the exit angle is
qualitatively the same on all the grids, but with a smoother
distribution with respect to experiments (Fig. 3b). From the
plots of total pressure and energy loss coefficients of Figs. 3c
and 3d we can draw some interesting conclusions. In the coarse
grid, with only 25 points in the hub-to-tip direction, the dis-
tribution of the losses is only roughly captured. We need at
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tip end wall

V \

\ \ t ;\ i,
1 ,

Fig. 4 Details of the horseshoe vortices near tip and hub: a) horseshoe vortex and counter-rotating corner vortex near tip, b) horseshoe vortex
and counter-rotating corner vortex near hub.

The liftoff of the passage vortex on the suction side of the
airfoil is evident from the particle trace near the wall of Fig.
5a. The effect is more pronounced near the tip because of
the thicker inlet boundary layer.

Goldman Annular Vane with Contoured End Wall
Figure Ib shows the 177 x 33 x 65 computational mesh

for the Goldman vane with an s-shaped contoured end wall
at the hub after midchord. Some details of the calculation for
this case are summarized in Figs. 5b and 6. The exit isentropic
Mach number at the hub is now about 0.695. The computed
surface isentropic Mach number agrees well with experiments22

near the hub, at midspan, and near the tip. On the hub, the
presence of the contoured end wall causes a stronger pressure
gradient between pressure and suction sides, resulting in a
stronger liftoff of streamlines on the suction side as shown by
the simulated oil flow-trace of Fig. 5b.

Langston Low-Speed Linear Cascade
Langston et al.,23 in 1976, made detailed measurements in

a low-speed, large-scale plane turbine cascade. The work in-
cluded experimental visualizations of the three-dimensional
nature of the flow. The flow exhibits important three-dimen-
sional separation on both airfoil surface and end wall.

Fig. 5 Particle traces on the suction side of the Goldman annular
vane: a) noncontoured end wall, b) contoured end wall.

least 49 points to have a spanwise loss prediction which is
nearly space-converged. Coarse grid losses are also twice as
large as the experiment at midspan, thus confirming the in-
dication of the two-dimensional analysis9 which suggested the
use of y+ near the unity. Both the medium and fine grids
predict the losses well, except near the tip, where the bound-
ary layer is thicker. The kink in the losses is computed closer
to the wall than experiments indicate.

The position of the horseshoe vortices near the hub and tip
is given in Fig. 4. The enlargements show the counter-rotating
corner vortices.
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Fig. 6 Goldman annular vane with contoured end wall: a) isentropic
Mach number distribution near hub, b) isentropic Mach number dis-
tribution at mid span, and c) isentropic Mach number distribution
near tip.
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Fig. 7 177 x 33 x 65 computational grid for the Langston cascade.

Fig. 8 Computed and experimental end wall limiting stream lines:
a) computed, b) experiment.23'24

Even though the flow conditions of this test are at very low
speed and not amenable to calculations using compressible
flow codes, the Langston cascade is quite often used in three-
dimensional code validation. The 177 x 33 x 65 grid we used
is depicted in Fig. 7. Graziani24 took these visualizations of
the flow for two different inlet boundary-layer thicknesses.
Because the aim of this study is to investigate the capability
of reproducing the three-dimensional features of the flow, we
are reporting calculations for the thick inlet boundary layer.
Figure 8 compares the predicted and measured end wall lim-
iting streamlines. The structure of the flow, as well as the
position of the saddle point, are in good agreement with ex-
periments. The fact that the computed saddle point is ahead
of the experiment is common to several calculations (i.e.,
Refs. 5 and 7). In our opinion this discrepancy can be partially
attributed to the difficulty of having very similar inlet bound-
ary layers in the calculations as in the experiments. The inlet
boundary layer has been modeled by simply imposing the
thickness and using the i power law. In addition, the exper-
iments were made using four blades and tailboards to simulate
periodicity. This slightly influences exit angle, pressure, and
probably also details of secondary flows.

On the suction surface of the airfoil, the particle traces of
Fig. 9 and the experimental limiting streamlines clearly dem-
onstrate the code's capability in predicting the three-dimen-
sional flow separation.
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Fig. 9 Langston cascade. Computed and experimental limiting stream lines on suction side: a) computed, b) computed, and c) experiment.23'24

Conclusions
The central-difference, finite volume scheme with eigen-

value scaling for artificial dissipation terms, variable-coeffi-
cient implicit smoothing, and full multigrid has been extended
to predict three-dimensional viscous cascade flows. We report
the comparisons of calculations with experiments for the
Goldman21'22 annular cascade with and without end wall con-
touring, and for the Langston23'24 cascade. For the cases stud-
ied, good overall predictions can be obtained with the Bald-
win-Lomax12 turbulence model both in terms of pressure
distribution and loss coefficients. The grid-dependency study
has also been conducted to determinate the grid spacing nec-
essary to capture fine details of the three-dimensional viscous
flows. With these accelerating strategies, detailed three-di-
mensional viscous solutions can be obtained for a reasonable
fine grid in less than 1 h on a modern supercomputer.
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